
PHYSICAL REVIEW E MARCH 1999VOLUME 59, NUMBER 3
Diffusivity and pore distribution in fractal and random media
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The diffusion of a gas particle in a porous medium~fractal or random! is studied. Diffusivity and pore chord
distribution are computed for different gas particle sizes and different densities of the porous media. This
calculation allows us to estimate the critical density where the gas does not percolate from one side to the other
side of the porous medium.@S1063-651X~99!10903-6#

PACS number~s!: 66.10.Cb, 61.43.Hv, 36.40.Sx
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I. INTRODUCTION

Disordered porous solids play an important role in ind
trial processes such as separation science, heterogeneo
talysis, oil recovery, glass, and ceramic processing@10#. The
confinement and the geometrical disorder of these syst
strongly influence the dynamic or thermodynamic proces
which can take place inside the pore network.

Several studies have been made on the diffusion of fi
size particles in porous media@1–4#. These studies were
mainly focused on diffusion in random media. Works
long-range correlated media, as, for example, fractal me
can be found in@5–7#.

To study the diffusivity in random or fractal media, on
may use different methods such as Monte Carlo simulatio
analytical or numerical hydrodynamical approach, a
Brownian motion simulation techniques.

We shall study here the influence of the size of the
diffusing particle on the diffusion constant. The gas parti
will be diffusing either in a random medium or in a fract
medium.

Another interesting feature which is related to the diff
sion problem is the pore chord distribution@8,9#. A pore
chord distribution is a segment belonging to a pore and h
ing both ends on the interface pore-solid medium. It can
considered as a linear path, which is correlated to differ
points of the interface. The pore chord distribution is a dir
characterization of the pore distribution as a function of
pore size and may give indications on the fractal structure
the solid medium in which the diffusion takes place. W
shall focus on the pore chord distribution in fractal and ra
dom media, and compare these two media in that respe

A third point that we shall deal with here is the numeric
calculation of the percolation concentration for the diffusi
of finite size particles. Up to now, no exact calculation of t
percolation threshold of random~or fractal! media has been
made. We propose here a numerical method which allow
to compute this percolation threshold for random packings
nonoverlapping spheres.

II. THEORY AND NUMERICAL PROCEDURE

We used the same numerical procedure as in Ref.@5#. The
fractal medium is built using a three-dimensional off-latti
diffusion-limited cluster-cluster aggregation method~DLCA
PRE 591063-651X/99/59~3!/3012~4!/$15.00
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method! @11,12#. The numerical simulation of the gas motio
proceeds as follows: initially a sphere is released at rand
inside the pores under the condition that it should not over
with any other sphere. Then the sphere is allowed to follo
straight line motion in a chosen random direction~uniformly
distributed in space! until it collides with another sphere o
the solid medium~fractal or random!. Immediately after col-
lision, a new random direction is selected~in a half-space!
according to the so-called Knudsen cosine law@13,14#. After
a large number of collisions, and using periodic bound
conditions, one calculates the end-to-end square displ
ment l 2 as well as the total length of the trajectoryL. This
allows us to calculate the diffusion constantD:

D5
1

6
v

l 2

L
, ~1!

wherev (5A8kT/pm) is the mean molecular velocity o
the gas particle of massm at temperatureT. The influence of
the size of the gas particle is computed by simply increas
the numerical gas particle radius.

Recalling Ref.@5# , a simple calculation gives a diffusio
constant for packings of nonoverlapping spheres:

D}~ccrit2c!1/3/c, ~2!

wherec is the density of the packing andccrit is the percola-
tion concentration for a given size of gas particle~i.e., the
concentration for which the gas particle can no longer diffu
from one side of the simulation box to the other side!.

An adequate plotting allows us, by using formula~2!, to
estimate the critical concentrationccrit for packing of non-
overlapping spheres and a zero gas particle radius.

For packings of overlapping spheres, the correspond
formula is slightly different~see Ref.@5#!:

D}
~ccrit2c!1/3

c1/3

d ln c

ds
, ~3!

wheres gives the solid medium sphere radius byR5R0(1
1s), whereR0 is the sphere radius for the correspondi
packing of nonoverlapping spheres~assuming that all the
overlapping spheres have the same radius!.

Another interesting theoretical point is the pore chord d
tribution. For details, see Ref.@9#. We shall give here a brie
3012 ©1999 The American Physical Society
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summary of this paper: the chord size distribution ‘‘in num
ber’’ is related to the conditional probability of having
chord size~a segment linking to spheres surfaces! betweenr
and r 1dr. If the packing has a fractal distribution of mas
the pore chord distribution scales as

f ~R!}
1

RD21
, ~4!

whereR is a given pore chord size andD is the fractal di-
mension of the sphere packing.

III. NUMERICAL RESULTS

In Fig. 1~a!, we plotted the diffusivity~diffusion constant
D) as a function of the gas particle radiusRb for a disordered
medium and for a fractal medium built with the DLC
method. The graph is of linear logarithmic type. As we c
see, the curve for the disordered medium is almost linear
this type of plotting. For the fractal~DLCA! case, there is a
larger curvature nearRb50, then the curve becomes linea

FIG. 1. ~a! Linear logarithmic plot of the diffusivity as a func
tion of the gas particle radiusRb for random media~black circles!
and fractal media~squares!. The density of the media isc50.05.~b!
Linear logarithmic plot of the diffusivity as a function of the ga
particle radiusRb for random media~black circles! and fractal me-
dia ~squares!. The density of the media isc50.2.
or

FIG. 2. ~a! Linear logarithmic plot of the pore chord distributio
for random media. Three different densities of the media have b
used:c50.05~black line!, c50.1 ~dotted line!, andc50.2 ~dashed
line!. ~b! Linear logarithmic plot of the pore chord distribution fo
fractal media. Four different densities of the media have been u
c50.005~black line!, c50.02 ~dotted line!, c50.05 ~dashed line!,
and c50.1 ~long dashed line!. ~c! Log-log plot of the pore chord
distribution for fractal media. Four different densities of the med
have been used:c50.005 ~black line!, c50.02 ~dotted line!, c
50.05 ~dashed line!, andc50.1 ~long dashed line!.
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and the diffusivity becomes larger than that of the rand
medium. This is a consequence of the fractal character of
medium. We can see that in absolute, the diffusivity for
fractal medium is higher than for the random medium: in
fractal medium, the mean-square displacement of the
particle diverges until it reaches an upper limit which is p
portional to the fractal domain size. For this density of frac
medium (c50.05), the fractal domain is large enough to s
this divergence. In fact, the diffusing gas particle has its p
which is essentially located in large pores. The probabi
for one gas particle to begin its motion in a small pore is v
small, so the contribution to the diffusivity of the small por
is negligible compared with the contribution of the gas p
ticle path in large pores.

As a matter of fact, in Fig. 1~b!, the difference between
diffusivity in random~circles! and fractal~squares! media is
smaller than in Fig. 1~a!. The density is higher (c50.1) and
so the fractal domain is smaller and hence the fractal c
acter of the medium has a small influence on the diffusiv
diffusivities for random and fractal media do not differ ve
much for this density.

In Fig. 2~a!, we plotted the pore chord distribution fo
different densities of random media. In a linear-logarithm
plot, one may see that the curves are linear. This is cha
teristic of random media: the behavior of the pore cho
distribution is exponential.

On the contrary, for fractal~DLCA! media, in a linear-
logarithmic plot, the pore chord distribution has two regim
the first regime, for pores radii near 0, shows a curve wit
nonexponential behavior; then in the second regime,
curves recover their exponential behavior~they are linear in
a linear-logarithmic plot!. This may be interpreted as fo
lows: the pore chord distribution is influenced by the frac
character of the medium. In the first regime, the probabi
to have a given pore size is directly related to the frac
structure of the matter.

The same data were plotted in Fig. 2~c! but in a log-log
graph. The first regime is located between 0.5 and 101. The
second regime~where fractal correlations do not have a
further effects! appears after 101. This graph allows us to
estimate the upper limit of the fractal domainj which is the
limit of the power-law behavior of the pore chord distrib
tion. Following Fig. 2~c!, the fractal domain upper limit run
from 101 to 23101. But, this is a graphical estimation ofj
and the uncertainty on these values is about 1.

In Fig. 3~a!, we plotted the diffusivity for a zero radiu
particle as a function of the density of the medium~fractal or
random!. We see that, in a log-log plot, the two curves do n
differ much.

Figure 3~b! shows the cube of the diffusivity multiplied
by the density as a function of the density. Using formu
~2!, this plot allows us to estimate the percolation dens
~for which the gas particle no longer percolates!. For random
media, the critical density is about 0.72 and for fractal str
tures this density becomes close to 0.6. This extrapolatio
valid for packing of nonoverlapping spheres.

IV. DISCUSSION

The diffusivity of a zero size particle in a random mediu
is different from the diffusivity in a fractal medium. Accord
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ing to Levitz@15#, in fractal media the mean-square displac
ment, for fractal dimensions 1,D,2, runs as

^R2&}t22D16, ~5!

wheret is the time~equivalent to the total length of the ga
particle trajectory!. This mean-square displacement has
upper limit for finite fractals which is proportional to the siz
of the fractal domain. So although the mean-square displa
ment diverges, the diffusion constant is finite. As a matter
fact, for larger fractal domains, the diffusion constant will
larger. That explains the discrepancy between the diffusiv
in random and fractal media and explains that the diffusiv
is larger for lower densities of fractal media.

The pore chord distribution is directly related to the me
free path of the gas particle. Indeed, as the gas particle h
ballistic motion between two collisions with the porous m
dium, each free path is a pore chord, i.e., the distance
tween two points on the surface of the porous medium. I
interesting to see that for random media, the pore chord
tribution has an exponential behavior, whatever the p

FIG. 3. ~a! Log-log plot of Dc ~in dimensionless units! as a
function of the density of the porous media, for random me
~black circles! and fractal media~squares!. ~b! Linear plot of (Dc)3

versusc, where D is the diffusivity andc is the density of the
porous medium, for random media~black circles! and fractal media
~squares!. The extrapolation of these two curves allows us to e
mate the percolation densitiesccrit .
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chord size is. This is a characteristic feature of the rand
distribution of pore sizes in the case of random porous m
dia: the pore sizes have no correlation. So the diffusivity
random media is dominated by the smallest pore sizes:
gas particle has a probability which increases exponentia
when the sizes of the pores decrease, to remain in a por
the case of fractal media, the pore chord distribution ha
power-law behavior for the smallest pores, and then
larger pores the pore chord distribution becomes exponen
This is the effect of the fractal correlations of matter in fra
tal media, which influences the distribution of pore sizes.
the mean-square displacement diverges until it reaches
limit of the fractal domain. If the fractal domain is large, th
gas particle may have a hyperdiffusive behavior: the gas
ticle may stay a very long time in a small pore and th
suddenly reach a large pore . This is a Levy flight behav
The large free path influences the mean-square displace
but not the mean free path as they are very rare. If the fra
domain were not limited, it would not be possible to compu
the diffusivity, as the mean-square displacement would
verge to infinity.

Another interesting point that we studied here is the cr
cal density of the porous medium, for which the gas parti
can no longer diffuse from one side to the other side of
sample. It is evident that this critical density depends on
size of the gas particle and on the geometrical repartition
matter in the porous medium. We found different values
this critical density for a zero size particle. In this case@Fig.
3~b!#, the critical density may be related to the percolati
density: as the gas particle is of zero size, the critical den
corresponds to the case where the pores have no more
nections. So the critical densityccrit may be related to the sit
percolation critical densitycsite by ccrit512csite.
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V. CONCLUSION

We computed here the diffusivity of a gas partic
through porous media, either fractal media or random me
The gas particle diffusivity is studied as a function of the g
particle size and of the porous media density. To underst
the behavior of the diffusivity, we computed the pore cho
distribution, i.e., the probability to have a given size of por
In fractal media, this probability has a power-law behav
and the diffusivity diverges: this is a consequence of
fractal pore size distribution. In random media, the po
chord distribution decreases exponentially, so the me
square displacement evolves proportionally to the to
length of the trajectory which allows us to compute the d
fusivity. Finally, the critical density related to the site perc
lation density is numerically computed by the mean of t
diffusivity.

It would be interesting now to compute the diffusivity a
a function of the gas particle size and the porous med
density for different fractal dimension. A question whic
arises for future study is as follows: is the site percolat
density dependent on the fractal dimension and does ‘‘di
sivity’’ mean anything for large fractal domains?
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