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Diffusivity and pore distribution in fractal and random media
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The diffusion of a gas particle in a porous medi(inactal or randomis studied. Diffusivity and pore chord
distribution are computed for different gas particle sizes and different densities of the porous media. This
calculation allows us to estimate the critical density where the gas does not percolate from one side to the other
side of the porous mediumS1063-651X99)10903-§

PACS numbe(s): 66.10.Cb, 61.43.Hv, 36.40.Sx

I. INTRODUCTION method [11,12. The numerical simulation of the gas motion

Disordered porous solids play an important role in indus_proceeds as follows: initially a sphere is released at random

trial brocesses such as separation science. heteroaeneous |(r:1$jde the pores under the condition that it should not overlap
proc P . ' J with any other sphere. Then the sphere is allowed to follow a
talysis, oil recovery, glass, and ceramic proces$i. The

confinement and the geometrical disorder of these syste straight line motion in a chosen random directiamiformly

. 9 X . YSteMestributed in spageuntil it collides with another sphere of
strqngly influence the .dyf‘am'c or thermodynamic ProCesSeHe solid mediun(fractal or random Immediately after col-
which can take place inside the pore network.

Several studies have been made on the diffusion of finittIa'S'On’ a new random direction is selectdd a half-spack

size particles in porous medid—4]. These studies were according to the so-called Knudsen cosine [4®,14]. After

mainlv focused on diffusion in random media. Works Ona large number of collisions, and using periodic boundary
y . : . conditions, one calculates the end-to-end square displace-
long-range correlated media, as, for example, fractal media 2 . .
. rhentl< as well as the total length of the trajectoky This
can be found if5-7]. 2
e . allows us to calculate the diffusion constdbrt
To study the diffusivity in random or fractal media, one
may use different methods such as Monte Carlo simulations, 1 12
analytical or numerical hydrodynamical approach, and D= VN (1)
Brownian motion simulation techniques.
We shall study here the influence of the size of the gas

diffusing particle on the diffusion constant. The gas particleWherev (= y8KkT/7m) is the mean molecular velocity of

will be diffusing either in a random medium or in a fractal the gas particle of masa at temperaturd. The. mfluence of .
medium. the size of the gas particle is computed by simply increasing

Another interesting feature which is related to the diffu—theRZ%glﬁgcaégfé]pag'g:ﬁ]r?g'g;'culation ves a diffusion
sion problem is the pore chord distributidB,9]. A pore fg k ' ¢ P 0D gh ]
chord distribution is a segment belonging to a pore and haveonstant for packings of nonoverlapping spheres:
ing both ends on the interface pore-solid medium. It can be
considered as a linear path, which is correlated to different
points of the interface. The pore chord distribution is a direc
charagterization of the pore distribution as a function of the;o concentration for a given size of gas partidle., the
pore size and may give |(1d|cat|on§ on 'the fractal structure o oncentration for which the gas particle can no longer diffuse
the solid medium in which the diffusion takes place. We¢.o . ohe side of the simulation box to the other side
shall focus on the pore chord distribution in fractal and ran-" 5, adequate plotting allows us, by using formyg, to

dor: '::.eg'a’ _andhcomparﬁ tlrgseltwphn;]ema.m rt]hat respgcti estimate the critical concentratian,; for packing of non-
third point that we shall deal with here Is the numerical o 1anning spheres and a zero gas particle radius.

calculation of the percolation concentration for the diffusion For packings of overlapping spheres, the corresponding
of finite size particles. Up to now, no exact calculation of theformula is sliahtlv differentsee Ref[5]): '
percolation threshold of randofoer fracta) media has been ghtly € 15):

D (cqii—c)Yc, 2)

Wwherec is the density of the packing ardd,; is the percola-

made. We propose here a numerical method which allows us (Cer—C) R dInc
to compute this percolation threshold for random packings of Do 7 ds 3
nonoverlapping spheres. c

wheres gives the solid medium sphere radius By Ry(1

+5), whereR, is the sphere radius for the corresponding

packing of nonoverlapping spheréassuming that all the
We used the same numerical procedure as in[B¢fThe  overlapping spheres have the same radius

fractal medium is built using a three-dimensional off-lattice  Another interesting theoretical point is the pore chord dis-

diffusion-limited cluster-cluster aggregation meth@l.CA tribution. For details, see R€P]. We shall give here a brief

IIl. THEORY AND NUMERICAL PROCEDURE
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FIG. 1. (a) Linear logarithmic plot of the diffusivity as a func-
tion of the gas patrticle radiuR, for random medidblack circle$
and fractal medigsquares The density of the media 5= 0.05.(b)
Linear logarithmic plot of the diffusivity as a function of the gas
particle radiusR,, for random medidblack circle$ and fractal me-
dia (squares The density of the media is=0.2.

summary of this paper: the chord size distribution “in num-
ber” is related to the conditional probability of having a
chord size(a segment linking to spheres surfacbstweenr
andr +dr. If the packing has a fractal distribution of mass,
the pore chord distribution scales as

f(R)x

RD*l ’ (4)

whereR is a given pore chord size aridl is the fractal di-
mension of the sphere packing.

IIl. NUMERICAL RESULTS

In Fig. 1(a), we plotted the diffusivity(diffusion constant
D) as a function of the gas particle radidg for a disordered
medium and for a fractal medium built with the DLCA
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FIG. 2. (a) Linear logarithmic plot of the pore chord distribution
for random media. Three different densities of the media have been
used:c=0.05(black ling, c=0.1 (dotted ling, andc=0.2 (dashed
line). (b) Linear logarithmic plot of the pore chord distribution for
fractal media. Four different densities of the media have been used:
¢=0.005(black line,, c=0.02 (dotted ling, c=0.05(dashed ling

method. The graph is of linear logarithmic type. As we Canangc=0.1 (long dashed ling (c) Log-log plot of the pore chord
see, the curve for the disordered medium is almost linear fogistribution for fractal media. Four different densities of the media

this type of plotting. For the fractdDLCA) case, there is a
larger curvature nedr,=0, then the curve becomes linear,

have been usedc=0.005 (black line, c=0.02 (dotted ling, ¢
=0.05(dashed ling andc=0.1 (long dashed ling
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and the diffusivity becomes larger than that of the random 10’
medium. This is a consequence of the fractal character of the
medium. We can see that in absolute, the diffusivity for the
fractal medium is higher than for the random medium: in the
fractal medium, the mean-square displacement of the gas
particle diverges until it reaches an upper limit which is pro-
portional to the fractal domain size. For this density of fractal
medium €=0.05), the fractal domain is large enough to see
this divergence. In fact, the diffusing gas particle has its path
which is essentially located in large pores. The probability
for one gas particle to begin its motion in a small pore is very o+ Disorder
small, so the contribution to the diffusivity of the small pores =—= DLCA
is negligible compared with the contribution of the gas par-

ticle path in large pores.

As a matter of fact, in Fig. (b), the difference between 10"
diffusivity in random(circles and fractal(squares media is @)
smaller than in Fig. @a). The density is higherq=0.1) and
so the fractal domain is smaller and hence the fractal char-
acter of the medium has a small influence on the diffusivity:
diffusivities for random and fractal media do not differ very
much for this density.

In Fig. 2(a), we plotted the pore chord distribution for 0.0040 -
different densities of random media. In a linear-logarithmic
plot, one may see that the curves are linear. This is charac-
teristic of random media: the behavior of the pore chord
distribution is exponential.

On the contrary, for fractalDLCA) media, in a linear- —« Dicorder
logarithmic plot, the pore chord distribution has two regimes: o—o DLCA
the first regime, for pores radii near 0, shows a curve with a
nonexponential behavior; then in the second regime, the
curves recover their exponential behavitirey are linear in 00000 ‘ . e
a linear-logarithmic plot This may be interpreted as fol- 0 %0 " Cmensonee
lows: the pore chord distribution is influenced by the fractal
character of the medium. In the first regime, the probability FIG. 3. (a) Log-log plot of D¢ (in dimensionless unijsas a
to have a given pore size is directly related to the fractafunction of the density of the porous media, for random media
structure of the matter. (black circles and fractal medigsquares (b) Linear plot of Dc)®

The same data were plotted in FigcRbut in a log-log ~ versusc, whereD is the diffusivity andc is the density of the
graph. The first regime is located between 0.5 antd The  Porous medium, for random medialack circleg and fractal media
second regimeéwhere fractal correlations do not have any (squares The extr.apolatiorlof these two curves allows us to esti-
further effects appears after 20 This graph allows us to Mate the percolation densities;;
estimate the upper limit of the fractal domajrwhich is the
limit of the power-law behavior of the pore chord distribu-
tion. Following Fig. Zc), the fractal domain upper limit runs
from 10! to 2x 10", But, this is a graphical estimation &f (R2)ort~20+6 ®)
and the uncertainty on these values is about 1. '

In Fig. 3(a), we plotted the diffusivity for a zero radius \yheret is the time(equivalent to the total length of the gas
particle as a function of the density of the meditinactal or  paricle trajectory. This mean-square displacement has an
random). We see that, in a log-log plot, the two curves do notypher [imit for finite fractals which is proportional to the size
d|ffe.r much. e . of the fractal domain. So although the mean-square displace-

Figure 3b) shows the cube of the diffusivity multiplied ent giverges, the diffusion constant is finite. As a matter of
by the density as a function of the density. Using formulagact for arger fractal domains, the diffusion constant will be
(2), this plot allows us to estimate the percolation densityjarger. That explains the discrepancy between the diffusivity
(for which the gas particle no longer percolaté=or random i random and fractal media and explains that the diffusivity
media, the critical density is about 0.72 and for fractal struc4g larger for lower densities of fractal media.

tures this density becomes close to 0.6. This extrapolation is Tne pore chord distribution is directly related to the mean

D (dimensionless)
So
1

10" 10
¢ (dimensionless)

Extrapolation

(Do)*

toCeri

0.0020 -

ing to Levitz[15], in fractal media the mean-square displace-
ment, for fractal dimensions<ID <2, runs as

valid for packing of nonoverlapping spheres. free path of the gas particle. Indeed, as the gas particle has a
ballistic motion between two collisions with the porous me-
IV. DISCUSSION dium, each free path is a pore chord, i.e., the distance be-

tween two points on the surface of the porous medium. It is
The diffusivity of a zero size particle in a random medium interesting to see that for random media, the pore chord dis-
is different from the diffusivity in a fractal medium. Accord- tribution has an exponential behavior, whatever the pore
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chord size is. This is a characteristic feature of the random V. CONCLUSION
distribution of pore sizes in the case of random porous me- e .
dia: the pore sizes have no correlation. So the diffusivity in We computed here the diffusivity of a gas particle

random media is dominated by the smallest pore sizes: tht@rough porous media, either fractal media or random media.

gas particle has a probability which increases exponentially! "€ 92s particle diffusivity is studied as a function of the gas

when the sizes of the pores decrease, to remain in a pore. Rirticle size and of the porous media density. To understand
the case of fractal media, the pore chord distribution has e behavior of the diffusivity, we computed the pore chord
power-law behavior for the smallest pores, and then fodistribution, i.e., the probability to have a given size of pores.
larger pores the pore chord distribution becomes exponentiain fractal media, this probability has a power-law behavior
This is the effect of the fractal correlations of matter in frac-and the diffusivity diverges: this is a consequence of the
tal media, which influences the distribution of pore sizes. Sofractal pore size distribution. In random media, the pore
the mean-square displacement diverges until it reaches thahord distribution decreases exponentially, so the mean-
limit of the fractal domain. If the fractal domain is large, the square displacement evolves proportionally to the total
gas particle may have a hyperdiffusive behavior: the gas patength of the trajectory which allows us to compute the dif-
ticle may stay a very long time in a small pore and thenfusivity. Finally, the critical density related to the site perco-
suddenly reach a large pore . This is a Levy flight behavior|ation density is numerically computed by the mean of the
The large free path influences the mean-square displacemeditfusivity.
but not the mean free path as they are very rare. If the fractal |t would be interesting now to compute the diffusivity as
domain were not limited, it would not be possible to computey function of the gas particle size and the porous medium
the diffusivity, as the mean-square displacement would digensity for different fractal dimension. A question which
verge to infinity. arises for future study is as follows: is the site percolation
Another interesting pOint that we studied here is the Criti'density dependent on the fracta| dimension and does “diffu_

cal density of the porous medium, for which the gas particlesjyity” mean anything for large fractal domains?
can no longer diffuse from one side to the other side of the

sample. It is evident that this critical density depends on the

size of _the gas particle an_d on the geomet_rical repartition of ACKNOWLEDGMENTS
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